
COP 4710: MySQL Introduction Page 1 Dr. Mark Llewellyn ©

COP 4710: Database Systems

Fall 2011

Introduction To MySQL

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4710/fall2011

COP 4710: MySQL Introduction Page 2 Dr. Mark Llewellyn ©

MySQL RDBMS
• MySQL is a database server (although it does come with a set

of simple client programs). The current stable version is
5.5.16 and can be downloaded from www.mysql.com. I’m
illustrating version 5.5.15 which I downloaded last week.
(Any of the versions of MySQL 5.1.32 or greater will be fine
for our purposes.)

• It is typically used in thin client environments. In other words,
it is used in client-server systems where the bulk of the
processing and storage takes place on the server, and the client
is little more than a dumb terminal.

• MySQL performs multithreaded processing, which means that
multiple clients are allowed to connect to it and run
transactions simultaneously. This makes MySQL extremely
fast and well suited to client-server environments such as Web
sites and other environments that process numerous
transactions for multiple users.

http://www.mysql.com/
http://www.mysql.com/
http://www.mysql.com/
http://www.mysql.com/
http://www.mysql.com/

COP 4710: MySQL Introduction Page 3 Dr. Mark Llewellyn ©

Click here to go to download page

COP 4710: MySQL Introduction Page 4 Dr. Mark Llewellyn ©

This should be the next page you see.

Click this option to go to MySQL

Community Server page.

COP 4710: MySQL Introduction Page 5 Dr. Mark Llewellyn ©

The MySQL Community Server page.

COP 4710: MySQL Introduction Page 6 Dr. Mark Llewellyn ©

Scroll down this page and select the

proper version for your system and a site

to begin download. There will be a

registration type form at the top of the

page…you can ignore this if you wish

and go straight to the download site.

COP 4710: MySQL Introduction Page 7 Dr. Mark Llewellyn ©

Go back to the main download

page and also download MySQL

Workbench which contains the

Administrator and MySQL Query

Browser GUI tools.

COP 4710: MySQL Introduction Page 8 Dr. Mark Llewellyn ©

Once again, go back to the main

download page and select

Connectors.

COP 4710: MySQL Introduction Page 9 Dr. Mark Llewellyn ©

Download the Connector/J for use

with Java applications.

COP 4710: MySQL Introduction Page 10 Dr. Mark Llewellyn ©

• Once you’ve got MySQL downloaded, go through

the installation process. It may vary somewhat

depending on platform.

• I’ve illustrated the basic install on Windows XP

over the next few pages, just to give you an idea of

what you should be seeing.

Installing MySQL 5.5.15

COP 4710: MySQL Introduction Page 11 Dr. Mark Llewellyn ©

• Once you’ve got MySQL downloaded, go through the installation

process. It may vary somewhat depending on platform.

• I’ve illustrated the basic install on Windows XP over the next few pages,

just to give you an idea of what you should be seeing.

• Once the Window installer is running you should see the following

window appear:

Installing MySQL 5.5.15

• Click Next and accept

the terms on the next

window.

COP 4710: MySQL Introduction Page 12 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Your choice here.

For this course, a

typical set-up will be

fine.

COP 4710: MySQL Introduction Page 13 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Click Install

COP 4710: MySQL Introduction Page 14 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

COP 4710: MySQL Introduction Page 15 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Click Finish

COP 4710: MySQL Introduction Page 16 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Initial server

configuration window

COP 4710: MySQL Introduction Page 17 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

COP 4710: MySQL Introduction Page 18 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Your choice here. If

you are not sure if there

is already a MySQL

server on your

machine, choose the

detailed configuration

setting.

If you already have an

instance of a MySQL

server on your

machine, you‟ll see this

screen first, followed by

the one above. Select

reconfigure instance.

COP 4710: MySQL Introduction Page 19 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Choose the

developer machine

option

COP 4710: MySQL Introduction Page 20 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Choose the

multifunctional

database option

COP 4710: MySQL Introduction Page 21 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Choose the

installation path to

keep InnoDB

tables in same

area as other

MySQL files

COP 4710: MySQL Introduction Page 22 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Select manual setting

for this option. The

default is 15, I set mine

to 10, but you can use

any number you would

like, but pick something

greater than 3 or 4.

COP 4710: MySQL Introduction Page 23 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Accept all

defaults in this

window

COP 4710: MySQL Introduction Page 24 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Your choice

again

COP 4710: MySQL Introduction Page 25 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Accept default options

This option is not marked

by default, but you can

mark and accept it if you

want to include MySQL file

locations in your PATH

statement.

COP 4710: MySQL Introduction Page 26 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Accept default setting and

enter a password for the root

(superuser with all privileges

by default). Enabling root

access from remote machines

is only necessary if you will be

accessing the DB as the root

user from a remote machine –

we will not be doing this in this

course.

Do not enable this

option

COP 4710: MySQL Introduction Page 27 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

Configuration is about to

begin. Now cross your

fingers, toes, and anything

else you have, take a deep

breath, click the Execute

button and close your eyes

for a few seconds.

When they all have green

check marks in them –

you‟re good to go!

COP 4710: MySQL Introduction Page 28 Dr. Mark Llewellyn ©

Installing MySQL 5.5.15 (cont.)

You‟ve successfully

installed MySQL!!

COP 4710: MySQL Introduction Page 29 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

COP 4710: MySQL Introduction Page 30 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

COP 4710: MySQL Introduction Page 31 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

COP 4710: MySQL Introduction Page 32 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

COP 4710: MySQL Introduction Page 33 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

COP 4710: MySQL Introduction Page 34 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

The main Workbench window

COP 4710: MySQL Introduction Page 35 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

Select a MySQL server

instance to manage and then

click Server Administration

COP 4710: MySQL Introduction Page 36 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

This is the main server

administration window. From here

you can manage your MySQL

server instance, including stopping

and starting it.

Click Home to

return to the

main screen

COP 4710: MySQL Introduction Page 37 Dr. Mark Llewellyn ©

Highlight the connection you

want to use, double clicking will

open the SQL development

workbench (see next page)

COP 4710: MySQL Introduction Page 38 Dr. Mark Llewellyn ©

Installing/Configuring MySQL

Workbench 5.2.35

COP 4710: MySQL Introduction Page 39 Dr. Mark Llewellyn ©

2. Enter SQL statement/command in this

 window.

3. Click the “Execute Current SQL

 Statement In Connected Server” icon.

1. Select the database to

use (double click)

COP 4710: MySQL Introduction Page 40 Dr. Mark Llewellyn ©

4. Results of the query are

 shown in the output window.

COP 4710: MySQL Introduction Page 41 Dr. Mark Llewellyn ©

This is your data

modeling tool – uses

EER syntax

COP 4710: MySQL Introduction Page 42 Dr. Mark Llewellyn ©

COP 4710: MySQL Introduction Page 43 Dr. Mark Llewellyn ©

Running MySQL 5.5.15

• For this course, pretty much everything you’ll need to be

able to do with your database project can be done via the

Workbench tools.

• Although, if you prefer, or would like to see a slightly

different perspective, the MySQL server also includes a basic

MySQL Command Line.

• See the next page.

COP 4710: MySQL Introduction Page 44 Dr. Mark Llewellyn ©

Running MySQL 5.5.15 (cont.)

Hopefully, you see this output from

MySQL. The MySQL server is now

awaiting a command from this client.

COP 4710: MySQL Introduction Page 45 Dr. Mark Llewellyn ©

List all databases managed by this

MySQL server which are

accessible to this client.

Note: new installations will contain only 4
databases: information_schema,

mysql, performance_schema, and

test.

COP 4710: MySQL Introduction Page 46 Dr. Mark Llewellyn ©

List all databases managed by this

MySQL server which are

accessible to this client.

Note: new installations will contain only 4
databases: information_schema,

mysql, performance_schema, and

test.

COP 4710: MySQL Introduction Page 47 Dr. Mark Llewellyn ©

Use the UP/DOWN arrow

icons to contract/expand

the database and table

schemas. It will take you

down to the attribute level.

COP 4710: MySQL Introduction Page 48 Dr. Mark Llewellyn ©

To see detailed information

about a table use the
describe <tablename>

command.

COP 4710: MySQL Introduction Page 49 Dr. Mark Llewellyn ©

Specify which table‟s schema

to describe. All information

regarding the schema visible

to the user is displayed.

Let‟s create a new database schema

named sample.

Start by clicking the ”Create A New

Schema” icon.

COP 4710: MySQL Introduction Page 50 Dr. Mark Llewellyn ©

Specify which table‟s schema

to describe. All information

regarding the schema visible

to the user is displayed.

This will pop-up this new window to

allow you to name the new database

schema.

Enter the new schema name then click

the Apply button at the bottom.

COP 4710: MySQL Introduction Page 51 Dr. Mark Llewellyn ©

Specify which table‟s schema

to describe. All information

regarding the schema visible

to the user is displayed.

This will pop-up this new window to

allow you to review the actual SQL

statement that will be executed to

create the new schema.

Click the Apply button at the bottom.

COP 4710: MySQL Introduction Page 52 Dr. Mark Llewellyn ©

Specify which table‟s schema

to describe. All information

regarding the schema visible

to the user is displayed.

This last screen shows that the command was successfully

executed. If an error had occurred you could go into the

administrator and look at a log file to see exactly what went

wrong.

Click the Finish button at the bottom. You may see one

more screen telling you everything went ok.

COP 4710: MySQL Introduction Page 53 Dr. Mark Llewellyn ©

The new database schema is

now in place. Notice that it

has no tables in the database

yet.

COP 4710: MySQL Introduction Page 54 Dr. Mark Llewellyn ©

To add a table to the current

schema, click the “Add Table”

Action entry.

COP 4710: MySQL Introduction Page 55 Dr. Mark Llewellyn ©

1. First step is to name the

 table.

Table tab will be opened first.

After naming the table, click

the Columns tab to see the

next screen.

COP 4710: MySQL Introduction Page 56 Dr. Mark Llewellyn ©

2. Define all of the columns

for the table. Then click

Apply

COP 4710: MySQL Introduction Page 57 Dr. Mark Llewellyn ©

Again you‟ll see the actual

SQL Create statement that

will be executed to construct

this table. Click Apply

COP 4710: MySQL Introduction Page 58 Dr. Mark Llewellyn ©

This time there was an error

in the table definition I

specified. Click the Back

button to correct.

COP 4710: MySQL Introduction Page 59 Dr. Mark Llewellyn ©

MySQL dates range from

1000-01-01 to 9999-12-31.

So I put in a correct value

this time.

COP 4710: MySQL Introduction Page 60 Dr. Mark Llewellyn ©

The new table.

COP 4710: MySQL Introduction Page 61 Dr. Mark Llewellyn ©

Manipulating Tables in MySQL (cont.)

• The create table command has the following general

format:

 create [temporary] table

 [if not exists] tablename

 [(create_definition, ...)]

 [table_options] [select_statement];

• If the [if not exists] clause is present, MySQL will produce

an error message if a table with the specified name already

exists in the database, otherwise the table is created.

COP 4710: MySQL Introduction Page 62 Dr. Mark Llewellyn ©

Manipulating Tables in MySQL (cont.)

• A temporary table exists only for the life of the current database

connection. It is automatically destroyed when the connection is

closed or dies.

• Two different connections can use the same name for a temporary

table without conflicting with one another.

• Temporary tables are most useful when queries get complex and

intermediate results become useful. Also, versions of MySQL

earlier than version 4.1 do not have subselect capability and

temporary tables are a convenient way to simulate subselect query

results.

Note: Non-root users require special permission to be able to create temporary tables.

These users must have the Create_tmp_tables privilege set in the user grant table. We‟ll

see more on this later.

COP 4710: MySQL Introduction Page 63 Dr. Mark Llewellyn ©

Creating A Temporary Table From A Select Query

A SELECT query

produces a result

set which has been

extracted from one

or more tables. A

table can be

created with the

results of this data

using the create

table command.

Notice that

temporary tables

do not appear in a

table listing.

COP 4710: MySQL Introduction Page 64 Dr. Mark Llewellyn ©

Altering A Table

• After a table has been created, it is possible to change the

specifications of its schema. This is done through the

alter table command:

 alter table table_name action_list

– Note: Changing the schema of a table in a database is not something

that is done very often once the database has been created. The time

for altering the schema is during the design phase. Altering the

schema of an operational database is a very dangerous thing.

• Multiple changes to the table can be made at the same time

by separating actions with commas in the action_list.

• The possible attribute (column) actions that can be used are

shown in the table on the following slide.

COP 4710: MySQL Introduction Page 65 Dr. Mark Llewellyn ©

Altering A Table (cont.)

Action Syntax Action Performed

add [column] column_declaration

 [first | after column_name]
Add a column to the table

alter [column] column_name

 {set default literal | drop default}

Specify new default value for a

column or remove old default

change [column] column_name

 column_declaration

Modify column declaration with

renaming of column

modify [column] column_declaration
Modify column declaration

without renaming column

drop [column] column_name
Drop a column and all data

contained within it.

rename [as] new_table_name Rename a table

table_options Change the table options

Actions performed by alter table (column related) command

column_name represents the current name of the column, column_declaration represents the new

declaration, in the same format as if it were in a create command.

COP 4710: MySQL Introduction Page 66 Dr. Mark Llewellyn ©

COP 4710: MySQL Introduction Page 67 Dr. Mark Llewellyn ©

Change made

COP 4710: MySQL Introduction Page 68 Dr. Mark Llewellyn ©

Adding a new column to a

table

COP 4710: MySQL Introduction Page 69 Dr. Mark Llewellyn ©

New column added to the

table

COP 4710: MySQL Introduction Page 70 Dr. Mark Llewellyn ©

Inserting Data Into A Table

• Data can be entered into a MySQL table using either the insert or

replace commands.

• The insert statement is the primary way of getting data into the

database and has the following form:

 insert [low priority | delayed] [ignore] [into]table_name

 [set] column_name1 = expression1,

 column_name2 = expression2, …

 insert [low priority | delayed] [ignore] [into]table_name

 [(column_name,…)]values (expression,…), (…)…

 insert [low priority | delayed] [ignore] [into]table_name

 [(column_name,…)] select…

Form 1

Form 2

Form 3

COP 4710: MySQL Introduction Page 71 Dr. Mark Llewellyn ©

Inserting Data Into A Table (cont.)

• Form 1 of the insert statement is the most verbose, but also the most
common. The set clause explicitly names each column and states
what value (evaluated from each expression) should be put into
the table.

• Form 2 (insert values) requires just a comma separated list of the
data. For each row inserted, each data value must correspond with a
column. In other words, the number of values listed must match the
number of columns and the order of the value list must be the same
as the columns. (In form 1, the order is not critical since each
column is named.)

• Form 3 is used to insert data into a table which is the result set of a
select statement. This is similar to the temporary table example
seen earlier in the notes.

• The following couple of pages give some examples of the different
forms of the insert command.

COP 4710: MySQL Introduction Page 72 Dr. Mark Llewellyn ©

Insert form 1

COP 4710: MySQL Introduction Page 73 Dr. Mark Llewellyn ©

The new row

COP 4710: MySQL Introduction Page 74 Dr. Mark Llewellyn ©

Examples:

Inserting

Data Into A

Table

Using Form 1 for

insertion –

attribute order is

not important.

COP 4710: MySQL Introduction Page 75 Dr. Mark Llewellyn ©

Using Form 2

for insertion –

attribute order

is important.

COP 4710: MySQL Introduction Page 76 Dr. Mark Llewellyn ©

The new row

COP 4710: MySQL Introduction Page 77 Dr. Mark Llewellyn ©

Examples: Inserting Data Into A Table

Using Form 2

for insertion –

attribute order

is important.

COP 4710: MySQL Introduction Page 78 Dr. Mark Llewellyn ©

Creates an initially empty

table just like the bikes

table

Using Form 3

for insertion

COP 4710: MySQL Introduction Page 79 Dr. Mark Llewellyn ©

The bikes with

celeste color

COP 4710: MySQL Introduction Page 80 Dr. Mark Llewellyn ©

Examples: Inserting Data Into A Table

Creates an initially empty

table just like the bikes

table

Using Form 3

for insertion

This table contains the

name and cost of those

bikes whose color was

celeste from the source

table.

Table creation did not place

any data into the table

COP 4710: MySQL Introduction Page 81 Dr. Mark Llewellyn ©

Examples: Inserting Data Into A Table

Create an initially empty

table with a schema

different from the base

table.

Using Form 3

for insertion

This table contains the

those bike tuples

whose color was

celeste from the source

table.

COP 4710: MySQL Introduction Page 82 Dr. Mark Llewellyn ©

Using Scripts with MySQL
• Entering data to create sample databases using conventional

SQL commands is tedious and prone to errors. A much

simpler technique is to use scripts. The following illustrates

two techniques for invoking scripts in MySQL.

• Create your script file using the text editor of your choice.

• Comments in the SQL script files begin with a # symbol.

• In the script file example shown on the next slide, I drop the

database in the first SQL command. Without the if exists

clause, this will generate an error if the database does not exist.

The first time the script executes (or subsequent executions if

the database is dropped independently) the error will be

generated…simply ignore the error.

COP 4710: MySQL Introduction Page 83 Dr. Mark Llewellyn ©

Using Scripts with MySQL (cont.)

Run a simple selection query on the new

table.

Insert some tuples

Define schema for the new table.

Switch to the new database.

Create a new database.

Drop the database if it already exists.

COP 4710: MySQL Introduction Page 84 Dr. Mark Llewellyn ©

Using Scripts with MySQL (cont.)

Specify which

script to execute

Results of select query

at end of script.

COP 4710: MySQL Introduction Page 85 Dr. Mark Llewellyn ©

Specify which

script to execute

Results of select query

at end of script.

You can create new scripts

directly in the Workbench using

this tab option, or you can

import existing scripts

COP 4710: MySQL Introduction Page 86 Dr. Mark Llewellyn ©

Specify which

script to execute

Results of select query

at end of script.

Use this icon to execute your

script.

COP 4710: MySQL Introduction Page 87 Dr. Mark Llewellyn ©

Importing Data Using the mysqlimport Utility

• As with many things in MySQL there are several ways to

accomplish a specific task. For getting data into tables, the

mysqlimport utility is also useful.

• The mysqlimport utility reads a range of data formats,

including comma- and tab- delimited, and inserts the data into

a specified database table. The syntax for mysqlimport is:

 mysqlimport [options] database_name file1 file2 …

• This utility is designed to be invoked from the command line.

• The name of the file (excluding the extension) must match the

name of the database table into which the data import will

occur. Failure to match names will result in an error.

COP 4710: MySQL Introduction Page 88 Dr. Mark Llewellyn ©

Importing Data Using the mysqlimportUtility
(cont.)

• The file shown below was created to import additional data into

the states table within the testdb database used in the previous

example.

• In this case, the default field delimiter (tab), default field

enclosure (nothing), and the default line delimiter (\n) were used.

Many options are available and are illustrated in the table on

pages 65-66.

COP 4710: MySQL Introduction Page 89 Dr. Mark Llewellyn ©

Importing Data Using the mysqlimportUtility

Table updated

See tables on

pages 23-24

for listing of

options.

Importing a “data file” into a

MySQL database table using

the mysqlimport utility

COP 4710: MySQL Introduction Page 90 Dr. Mark Llewellyn ©

Importing Data Using the

mysqlimportUtility
Table before

another client

updated the table

using the

mysqlimport utility.

Table after another

client updated the

table using the

mysqlimport utility.

COP 4710: MySQL Introduction Page 91 Dr. Mark Llewellyn ©

mysqlimportUtility Options

Option Action

-r or –replace
Causes imported rows to overwrite existing rows if they

have the same unique key value.

-i or –ignore
Ignores rows that have the same unique key value as

existing rows.

-f or –force
Forces mysqlimport to continue inserting data even if

errors are encountered.

-l or –lock
Lock each table before importing (a good idea in

general and especially on a busy server).

-d or –delete Empty the table before inserting data.

--fields-terminated-by=„char‟
Specify the separator used between values of the same

row, default \t (tab).

--fields-enclosed-by=„char‟
Specify the delimiter that encloses each field, default is

none.

COP 4710: MySQL Introduction Page 92 Dr. Mark Llewellyn ©

mysqlimport Utility Options (cont.)

Option Action

--fields-optionally-enclosed-

by=„char‟

Same as –fields-enclosed-by, but delimiter is used only

to enclosed string-type columns, default is none.

--fields-escaped-by=„char‟
Specify the escape character placed before special

characters; default is \.

--lines-terminated-by=„char‟
Specify the separator used to terminate each row of

data, default is \n (newline).

-u or –user Specify your username

-p or –password Specify your password

-h or –host
Import into MySQL on the named host; default is

localhost.

-s or –silent Silent mode, output appears only when errors occur.

-v or –verbose Verbose mode, print more commentary on action.

-? or –help Print help message and exit

COP 4710: MySQL Introduction Page 93 Dr. Mark Llewellyn ©

Importing Data From A File With SQL
Statement Load Data Infile

• Using the utility mysqlimport to load data into a table from
an external file works well if the user has access to a command
window or command line.

• If you have access via a connection to only the MySQL
database, or you are importing data from within an executing
application, you will need to use the SQL statement Load
Data Infile.

• The Load Data Infile statement also provides a bit more
flexibility since the file name does not need to match the table
name. Other than that the options are basically the same and
the same results are accomplished.

• The example on page 70 illustrates this SQL command which
is available in MySQL.

COP 4710: MySQL Introduction Page 94 Dr. Mark Llewellyn ©

Importing Data From A File With SQL
Statement Load Data Infile (cont.)

• The basic form of the Load Data Infile statement is:

 LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE ‘filename’

 [REPLACE | IGNORE]

 INTO TABLE tablename

 [FIELDS

 [TERMINATED BY ‘char’]

 [[OPTIONALLY] ENCLOSED BY ‘char’]

 [ESCAPED BY ‘\char’]]

 [LINES

 [STARTING BY ‘char’]

 [TERMINATED BY ‘char’]]

 [IGNORE number LINES]

 [(column_name, …)]
Used to load only certain columns (not entire rows)

Ignores lines at the start of the file (miss header info)

Sets the characters

that delimit and

enclose the fields

and lines in the data

file. Similar to

mysqlimport syntax.

Same as –r and –i options in

mysqlimport utility – either replace

or ignore rows with duplicate keys.

Either allow concurrent update or block until no other clients

are reading from the specified table. See page 75.

COP 4710: MySQL Introduction Page 95 Dr. Mark Llewellyn ©

Load Data Infile Example

Text file containing the data to be loaded into the database table.

String fields may be enclosed by double

quotes in this file. Numeric values are

not enclosed in quotes.

Fields are delimited by commas and

lines are terminated by newline

characters (an invisible \n)

COP 4710: MySQL Introduction Page 96 Dr. Mark Llewellyn ©

States table before

addition of data

States table after

addition of data

Load data infile statement indicating

all of the parameters which describe

the configuration of the input file.

COP 4710: MySQL Introduction Page 97 Dr. Mark Llewellyn ©

Load Data Infile Example 2

Text file containing the data to be loaded into the database table.

California already exists in

the states table – this one

will replace the value of the

capital with a different

value.

COP 4710: MySQL Introduction Page 98 Dr. Mark Llewellyn ©

Same basic configuration as in previous

example except that we have instructed MySQL

to replace duplicate key value rows with new

values (in this case replacing California‟s

capital).

States table before

addition of data

States table after

addition of data.

Note that California‟s

capital has been

changed!

COP 4710: MySQL Introduction Page 99 Dr. Mark Llewellyn ©

Inserting/Replacing Data Using Replace

• Data can also be entered into a MySQL table using the replace

command.

• The replace statement has forms similar to the insert statement:

 replace [low priority | delayed] [ignore] [into]table_name

 [set] column_name1 = expression1,

 column_name2 = expression2, …

 replace [low priority | delayed] [ignore] [into]table_name

 [(column_name,…)]values (expression,…), (…)…

 replace [low priority | delayed] [ignore] [into]table_name

 [(column_name,…)] select…

Form 1

Form 2

Form 3

COP 4710: MySQL Introduction Page 100 Dr. Mark Llewellyn ©

Using replace
• The replace statement works similar to insert. It always tries

to insert the new data, but when it tries to insert a new row with the

same primary or unique key as an existing row, it deletes the old

row and replaces it with the new values.

• The following examples will illustrate how replace operates.

Changing non-key

values. Simplest form of

data replacement.

COP 4710: MySQL Introduction Page 101 Dr. Mark Llewellyn ©

Using Replace (cont.)

Specifying values for a

non-existent key.

Basically the same as an

insert since the key value

being replaced does not

currently exist.

COP 4710: MySQL Introduction Page 102 Dr. Mark Llewellyn ©

Performing Updates on Tables

• The update command allows you to modify the values of the

existing data in a table. The basic format of the statement is:

 update [low priority] [ignore] table_name

 set column_name1 = expression1,

 column_name2 = expression2, …

 [where where_definition]

 [limit num];

• There are basically two parts to the statement: the set portion

to declare which column to set to what value; and the where

portion, which defines which rows are to be affected.

• Limit restricts the number of rows affected to num.

COP 4710: MySQL Introduction Page 103 Dr. Mark Llewellyn ©

Before

update

COP 4710: MySQL Introduction Page 104 Dr. Mark Llewellyn ©

After

update

COP 4710: MySQL Introduction Page 105 Dr. Mark Llewellyn ©

Using update (cont.)

Global update within the

relation. All tuples have

their price field increased

by 5%

COP 4710: MySQL Introduction Page 106 Dr. Mark Llewellyn ©

Using update (cont.)

Specific update, only

tuples satisfying the select

condition (those with price

greater than 4500) will

have their price field

increased by 5%.

COP 4710: MySQL Introduction Page 107 Dr. Mark Llewellyn ©

Select Queries in MySQL
• The select command in MySQL is basically the same as in the standard

SQL, however, it does have some additional features. The basic format of
the statement is (not all options are shown – for complete details see the
SQL Manual):

 SELECT [ALL | DISTINCT | DISTINCTROW][HIGH_PRIORITY]

 [STRAIGHT JOIN] [SQL_SMALL_RESULT][SQL_BIG_RESULT]

 [SQL_BUFFER_RESULT][SQ_CACHE | SQL_NO_CACHE]

 select_expression, …

 [INTO {OUTFILE | DUMPFILE} ‘path/to/filename’ export_options]

 [FROM table_references

 WHERE where_definition]

 [GROUP BY {col_name | col_alias | col_pos | formula}

 [asc |desc], …]

 [HAVING where_definition]

 [ORDER BY {col_name | col_alias | col_pos | formula}

 [asc | desc], …]

 [LIMIT [offset,] num_rows]

 [PROCEDURE procedure_name];

